3.4.53 \(\int \frac {(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{3/2}} \, dx\) [353]

Optimal. Leaf size=97 \[ \frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{f (c-c \sin (e+f x))^{3/2}}+\frac {a^2 \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

[Out]

a*cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/f/(c-c*sin(f*x+e))^(3/2)+a^2*cos(f*x+e)*ln(1-sin(f*x+e))/c/f/(a+a*sin(f*x+
e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.14, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {2818, 2816, 2746, 31} \begin {gather*} \frac {a^2 \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(3/2)/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(a*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(f*(c - c*Sin[e + f*x])^(3/2)) + (a^2*Cos[e + f*x]*Log[1 - Sin[e + f
*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2818

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Dist[b*((2*m - 1)
/(d*(2*n + 1))), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rubi steps

\begin {align*} \int \frac {(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{3/2}} \, dx &=\frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a \int \frac {\sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx}{c}\\ &=\frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{f (c-c \sin (e+f x))^{3/2}}-\frac {\left (a^2 \cos (e+f x)\right ) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)} \, dx}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{f (c-c \sin (e+f x))^{3/2}}+\frac {\left (a^2 \cos (e+f x)\right ) \text {Subst}\left (\int \frac {1}{c+x} \, dx,x,-c \sin (e+f x)\right )}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)}}{f (c-c \sin (e+f x))^{3/2}}+\frac {a^2 \cos (e+f x) \log (1-\sin (e+f x))}{c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.29, size = 153, normalized size = 1.58 \begin {gather*} \frac {2 a \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {a (1+\sin (e+f x))} \left (-1-\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (e+f x)\right )}{c f \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (-1+\sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(3/2)/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(2*a*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*(-1 - Log[Cos[(e + f*x)/2] - Sin[(e + f*
x)/2]] + Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]*Sin[e + f*x]))/(c*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-
1 + Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(374\) vs. \(2(89)=178\).
time = 9.22, size = 375, normalized size = 3.87

method result size
default \(\frac {\left (\ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right ) \left (\cos ^{2}\left (f x +e \right )\right )-2 \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \left (\cos ^{2}\left (f x +e \right )\right )-\ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+2 \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \sin \left (f x +e \right ) \cos \left (f x +e \right )+2 \left (\cos ^{2}\left (f x +e \right )\right )-2 \cos \left (f x +e \right ) \sin \left (f x +e \right )+\ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right ) \cos \left (f x +e \right )-2 \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \cos \left (f x +e \right )+2 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right ) \sin \left (f x +e \right )-4 \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \sin \left (f x +e \right )+2 \sin \left (f x +e \right )-2 \ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+4 \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-2\right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}}}{f \left (\cos ^{2}\left (f x +e \right )+\cos \left (f x +e \right ) \sin \left (f x +e \right )+\cos \left (f x +e \right )-2 \sin \left (f x +e \right )-2\right ) \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {3}{2}}}\) \(375\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(ln(2/(cos(f*x+e)+1))*cos(f*x+e)^2-2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*cos(f*x+e)^2-ln(2/(cos(f*x
+e)+1))*sin(f*x+e)*cos(f*x+e)+2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*sin(f*x+e)*cos(f*x+e)+2*cos(f*x+e)^
2-2*cos(f*x+e)*sin(f*x+e)+ln(2/(cos(f*x+e)+1))*cos(f*x+e)-2*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*cos(f*x
+e)+2*ln(2/(cos(f*x+e)+1))*sin(f*x+e)-4*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*sin(f*x+e)+2*sin(f*x+e)-2*l
n(2/(cos(f*x+e)+1))+4*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-2)*(a*(1+sin(f*x+e)))^(3/2)/(cos(f*x+e)^2+cos
(f*x+e)*sin(f*x+e)+cos(f*x+e)-2*sin(f*x+e)-2)/(-c*(sin(f*x+e)-1))^(3/2)

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 147, normalized size = 1.52 \begin {gather*} -\frac {\frac {2 \, a^{\frac {3}{2}} \log \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{c^{\frac {3}{2}}} - \frac {a^{\frac {3}{2}} \log \left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}{c^{\frac {3}{2}}} + \frac {4 \, a^{\frac {3}{2}} \sqrt {c} \sin \left (f x + e\right )}{{\left (c^{2} - \frac {2 \, c^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {c^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (f x + e\right ) + 1\right )}}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

-(2*a^(3/2)*log(sin(f*x + e)/(cos(f*x + e) + 1) - 1)/c^(3/2) - a^(3/2)*log(sin(f*x + e)^2/(cos(f*x + e) + 1)^2
 + 1)/c^(3/2) + 4*a^(3/2)*sqrt(c)*sin(f*x + e)/((c^2 - 2*c^2*sin(f*x + e)/(cos(f*x + e) + 1) + c^2*sin(f*x + e
)^2/(cos(f*x + e) + 1)^2)*(cos(f*x + e) + 1)))/f

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-(a*sin(f*x + e) + a)^(3/2)*sqrt(-c*sin(f*x + e) + c)/(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^
2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}{\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Integral((a*(sin(e + f*x) + 1))**(3/2)/(-c*(sin(e + f*x) - 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 0.48, size = 91, normalized size = 0.94 \begin {gather*} -\frac {{\left (2 \, a \log \left ({\left | \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}\right )} \sqrt {a}}{c^{\frac {3}{2}} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-(2*a*log(abs(sin(-1/4*pi + 1/2*f*x + 1/2*e)))*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + a*sgn(cos(-1/4*pi + 1/2*f
*x + 1/2*e))/sin(-1/4*pi + 1/2*f*x + 1/2*e)^2)*sqrt(a)/(c^(3/2)*f*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^(3/2)/(c - c*sin(e + f*x))^(3/2),x)

[Out]

int((a + a*sin(e + f*x))^(3/2)/(c - c*sin(e + f*x))^(3/2), x)

________________________________________________________________________________________